Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
Q DP problem:
The TRS P consists of the following rules:
IF_QUOT3(true, x, y) -> QUOT2(minus2(x, y), y)
QUOT2(x, s1(y)) -> IF_QUOT3(le2(s1(y), x), x, s1(y))
IF_QUOT3(true, x, y) -> MINUS2(x, y)
LE2(s1(x), s1(y)) -> LE2(x, y)
QUOT2(x, s1(y)) -> LE2(s1(y), x)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
IF_QUOT3(true, x, y) -> QUOT2(minus2(x, y), y)
QUOT2(x, s1(y)) -> IF_QUOT3(le2(s1(y), x), x, s1(y))
IF_QUOT3(true, x, y) -> MINUS2(x, y)
LE2(s1(x), s1(y)) -> LE2(x, y)
QUOT2(x, s1(y)) -> LE2(s1(y), x)
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 2 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LE2(s1(x), s1(y)) -> LE2(x, y)
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
LE2(s1(x), s1(y)) -> LE2(x, y)
Used argument filtering: LE2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
Used argument filtering: MINUS2(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
IF_QUOT3(true, x, y) -> QUOT2(minus2(x, y), y)
QUOT2(x, s1(y)) -> IF_QUOT3(le2(s1(y), x), x, s1(y))
The TRS R consists of the following rules:
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
quot2(x, s1(y)) -> if_quot3(le2(s1(y), x), x, s1(y))
if_quot3(true, x, y) -> s1(quot2(minus2(x, y), y))
if_quot3(false, x, y) -> 0
The set Q consists of the following terms:
minus2(x0, 0)
minus2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
quot2(x0, s1(x1))
if_quot3(true, x0, x1)
if_quot3(false, x0, x1)
We have to consider all minimal (P,Q,R)-chains.